来自自主创新一线的报道

做好金刚钻,揽好瓷器活

关于自主研发科研仪器设备的采访札记(上)

其器。还有一句俗语:没有金刚钻, 揽不 科研仪器装备占比很低, 这种状况对我们 仪器设备的市场前景充满信心。事实上, 设备研制专项项目的, 经费需求在1000 了瓷器活。对于科学家们来说,科研仪器 设备就是"利器"和"金刚钻",没有必要的 仪器设备,很难做出原创性的科研成果。

天文望远镜的发明开辟了天文学研 显微镜则推动了纳米科技的发展……回 顾当代科研史,我们可以发现,仪器设备 的科技成就,甚至开拓出新的科研领域。

长,我国科研仪器装备水平有了明显提 种重大项目中的计算任务。

中国有句古语:工欲善其事,必先利 高,但多以从国外购置为主,自主研发的 科研工作的长远发展来说,显然是不利 的。因此,像上海光源和Mole-8.5这样 自主创新程度较高的重大基础科研设备 项目的顺利完成,可以说是我国科研工作 究新纪元,透射电镜和扫描电镜的出现促 的一大进步,为科学家们打造了神奇的独 进了生命科学和材料科学研究,扫描隧道 门兵器,让他们拥有了可以揽好瓷器活的

和技术方法上的突破,往往可以带来重大 这两个项目的使用热度中看出来:上海光 重点有力度。科研仪器的开发往往需要 先进的科研仪器设备。我们期待着,中 源需要忍痛拒绝 3/4 的使用申请,而 大量的资金,过去一个项目钱不多,想做 国的科学家们能在科研仪器设备研发中 近年来,随着国家科技投入的不断增 Mole-8.5还在搭建中时就已开始承担各 成一个仪器设备,科研工作者们常常需要 后来居上,做好更多的"金刚钻",揽出更

国家对此也非常重视:中央财政已经拨专 款设立国家重大科研仪器设备研制专项, 接向基金委申请;经费需求在1000万元 按照《国家重大科学仪器设备开发专项资 至1亿元的项目由主管部门负责推荐。 金管理办法(试行)》的规定,基金委每年 安排专项资金5亿元,科技部每年安排经

申请好几种项目资金,才能凑够经费。而 好的"瓷器活"。

这样的热度让我们对自主研发科研 按今年的新通知,申报国家重大科研仪器 万元及以下的项目采取自由申请方式,首 这个额度限制比以往有了大幅度的提升。

有人曾作过统计,在全部诺贝尔奖 项中,物理学科的2/3、化学学科的3/4 令人高兴的是,如今的科研仪器设备 和生理医学学科的 9/10 都直接与实验 科学家们对"金刚钻"的渴求可以从 研制不仅有政策有资金,而且资金发放有 有关,而所有的科学实验都必须借助于

洞照纤毫的上海光源

上海光源的优异性能使一大批以往无法在国内开 展的实验研究得以有效进行,用户科研成果显著,已发 表论文1100多篇

海 光

很多人都拍过 X 光照片, 可是你能想 象得到,X光照片不仅能照出一条小鱼的 骨骼,还能清晰地透视出它肚子里柔软的 鱼鳔么?在上海光源,我们就看到了一张 这样的透视照片。而拥有这种洞照纤毫 本领的X射线成像及生物医学应用光束 线站,只不过是"上海光源"现有7条光束 线站中的一条。

"我们已经获得上海市的科技进步特 等奖。"上海应用物理研究所党委副书记 赵明华告诉记者,采用同步辐射光源的上 海光源,可以说是高品质的巨型 X 光机和 超级显微镜,已成为支撑众多学科前沿基 础研究与高新技术研发不可或缺的实验 手段。"历史上已有21项诺贝尔奖是基于 X射线应用,而其中最近的5项全部是基 于同步辐射。

见到了正在紧张做实验的南开大学生命科 物(小鼠)肺泡三维结构;以生物医药为主 学院教授刘新奇。"今天9点至12点这3个 的二十多家企业已经利用上海光源进行 小时是我们的时间,要做蛋白质晶体衍射 实验。"刘新奇回答问题的语速很急,"时间 很宝贵,我们很早就申请排队了。"

的用户需求能得到满足。"上海光源大科学 学、地质考古学、环境和地球科学、高分子 装置管理部副主任阎和平说,未来上海光 科学、医学药学、信息科学等学科,涉及 源还将建设29条后续线站,包括16条公 用光束线站和为石化科研等服务的13条 专用光束线站。"等这些线站都填满后,就 可同时容纳上千名科学家一起工作了。"

这个供不应求的"上海光源"是我国 迄今建成的规模最大的大科学装置,由国 家发改委、上海市政府和中国科学院共同 投资建设,在经历了大约10年的项目可行 明华说,目前国内95%以上的结构生物学 性研究和工程预制研究后于2004年12月 破土动工,2007年12月首次出光,2009 们还将瞄准国家重大战略需求与世界科技 年4月建成并向用户开放,每年向用户供 前沿,建设一批高性能光束线站,使上海光 光 4500-5000 小时,每年接待用户超过 源成为支撑我国科技创新能力快速提升的 5000人,用户实验超过10000人次。

自主研制设备超过70%的上海光源, 是目前世界上最好的同步辐射光源之一, 自破土动工到首次出光仅用3年时间,创造 了世界纪录。英国《自然》杂志(Nature)曾 专门撰文报道,认为上海光源的建成"标志 着中国加入了世界级的同步辐射俱乐部"。

这个巨型X光机和超级显微镜能做

清华大学施一公研究组用它解析出 TAL 效应蛋白特异性识别 DNA 的结构 基础,入选2012年度"中国科学十大进 展";中科院物理所赵忠贤研究组用它发 现了新型铁基硫族化合物超导体在高压 下重新出现超导的新现象;中科院大化所 包信和研究组借助时间分辨 X 射线吸收 谱学从实验上验证了新型纳米催化剂及 其机理;首都医科大学罗述谦研究组基于 在生物大分子晶体学光束线站,记者 X光相衬成像技术,第一次观察到活体动 了新药研发工作……

截至2013年6月,上海光源已执行 通过专家评审的用户课题近4000个,涵 "线站供不应求,目前只有四分之一 盖生命科学、凝聚态物理、化学、材料科 290家单位,实验人员达6200多人。

> 上海光源的优异性能使一大批以往 无法在国内开展的实验研究得以有效进 行,用户科研成果显著,已发表论文1100 多篇,其中SCI-1区论文近200篇。

> "推动最明显的是结构生物学。中国 结构生物学已跨入世界一流水平之列。"赵 相关研究组都已成为上海光源的用户。"我 高性能同步辐射研究平台。"

跨越尺度的超算模拟

凡是论斤卖而不是论个卖的产品,都可以用Mole-8.5 系统来模拟和预测它的运行和反应过程,从而大大降低 研发时间和经费

在位于北京中关村的中科院过程工 它正致力于把从实验室到工厂、从分子级 到吨级的跨尺度的产品研发过程,用超级 计算机逼真地模拟出来,大大降低研发时

"简单来讲,凡是论斤卖而不是论个 卖的产品,都与过程工程密切相关,可以 用我们的'多尺度离散模拟'系统来模拟 和预测它的运行和反应过程。"研究员葛 蔚向记者介绍这个系统时自豪地说,该系 统曾完成了世界上第一个完整流感病毒 的原子级模拟,让病毒在计算机里"存活" 了一个纳秒,达到世界最高水平,"未来的 疫苗开发可以借助虚拟实验来进行";这 个系统还完成了全球最大规模的气固系 统直接数值模拟,将模拟规模从原来的百 个颗粒量级提升到百万颗粒量级。

这个系统的全称是"高效能低成本多 尺度离散模拟超级计算应用系统"。它根 据过程所提出的EMMS模拟范式建立, 被命名为 Mole-8.5 系统,属于国家重大 科研装备研制项目。该项目于2009年1 月启动,2010年11月正式通过验收,由 于应用需求迫切,项目在建设过程中就已 经开始承担国家重大专项、国家科技支撑 计划及国家自然科学基金重大基金项目 中的重要计算任务。

艺、宝钢的钢渣处理和下一代炼钢工艺等 提供模拟计算支持。"葛蔚表示, Mole-8.5 系统已开展的应用相当广阔。"现在的主 EMMS范式,该系统凝聚了过程所4代科 要合作模式是企业委托咨询,他们提出问 题,我们用EMMS范式来实现。'

例如,过程所通过此系统对宝钢的矿 石磁力分选工艺进行优化,就达到了单机 年增效益800万元左右的良好效果。

EMMS 范式能应用于多学科研究, 程研究所里,有一个虚拟过程工程平台,而它本身也是多学科合作的成果,研发团 队的主力是化工和过程工程的专家,还集 合了计算机和数学专业的学者。

> 中科院过程所从1984年开始就致 力于用多尺度方法研究气固两相系统, 逐步发展成极值型多尺度方法。这是 EMMS 范式的理论基础。随后,他们在 推广应用极值型多尺度方法的思想和用 离散方法证明不同系统稳定性条件的过 程中,逐步认识到多尺度和离散化是很 多工程问题的共性,自此致力于建立针 对这一共性的计算模拟方法和软件,并 设计相应计算机系统,从而形成了 EMMS范式。

"别人是先有硬件再有软件,我们是 反过来,先有软件再做硬件设计。"葛蔚表 示,过程所利用数十年的理论研究基础建 立了自己的算法框架和模拟软件,由于传 统计算机不适合运行多尺度离散模拟软 件,他们就从软件出发设计硬件,于2010 年建成双精度千万亿级的超级计算机系 统 Mole-8.5,并在与企业的合作中开发 出多种细分的应用软件。

EMMS范式的研发人员需要花费很 多时间编软件、搭硬件,往往没多少时间 写论文,会影响自身的职称评定,但他们 都坚持了下来。过程所副研究员孟凡勇 "我们为中石化的清洁汽油生产工 说:"我们在做一件有意义的事情,这件事 情会在历史上留下脚印。

> 从提出基本概念,到形成新的 研工作者30年的智慧与汗水。去年逝世 的过程所名誉所长郭慕孙院士曾经题写 过一幅大字——"注重积累,追求卓越,瞄 准前沿,服务需求",这正是EMMS范式 研发团队的精神写照。

▼ 双精度 千万亿级的超

级计算机系统 Mole-8.5

(以上图文均由本报记者佘惠敏采写、摄影)

一生只为一事来

本报记者 郎 冰

医疗科技有限公司董事长金磊浑身上下充 满了激情与力量:"这辈子,我只做一件事 办的佰仁是全球拥有牛心包生物心脏瓣膜 自主核心技术的两家公司之一,另外一家 生物瓣膜市场的半壁江山。更令人钦佩的 万患者深受其益。

企业赚钱,更是为国内患者造福。"海归出 在我国一直卖价不高。" 身的金磊,十几年前就因在生物医学工程

和优越的生活。当得知国内数以百万瓣膜 病患者急需人工生物心脏瓣膜,尤其是每 ——人工心脏瓣膜。以救助深陷病痛的无 年数万名复杂先心病患儿因此失去救治机 于2000年底毅然回国创业。

新型人工生物心脏瓣膜被批准上市,定价 是,佰仁凭借自主核心技术优势,使我国成 仅为16000元/枚(同质国外产品在出产国 "听从国家召唤回国创业,不仅是为办 生物瓣膜市场,以致后来进口的同类产品

国创新创业大赛中,佰仁凭借全球独一无二 的肺动脉带瓣管道产品,从4000多家企业 中脱颖而出,摘得桂冠。然而,令金磊最为 奈患者为己任,是我最大的幸福。"金磊创 会时,一种责任感无法抑制的冲动,促使他 感动的一瞬,却发生在甘肃12岁的复杂先 心病患儿吐露心声的一刻:"我现在很健康, 经过创业初期的艰辛打拼,2003年10 今后不再生活在恐惧中了,真希望这个产品 是美国的公司。目前,佰仁已经稳占我国 月,佰仁医疗研发的拥有自主知识产权的 能更快获批上市,让更多患复杂先心病的孩 子都能像我一样,过上幸福的生活。"

为全球生物瓣膜市场价格最低的国家,数 的价格为7200美元/枚),并且这一价格十 12年来,金磊几乎把全部精力都投入到产 年来未曾改变。"佰仁最先开拓了国内人工 品研发中。"从人工脑(脊)膜到人眼后巩 利。"凭借多年的积累和完善,一支综合素 膜,从人工生物瓣膜到带瓣生物血管,佰仁 质强,有着8年以上研发经验的核心团队 医疗已经把近30种各类人工生物软组织 已在佰仁医疗悄然成形,正准备在广阔的 "佰仁做产品就是为了患者,特别是那 材料都做出来了,未来几年将全部完成注 国际市场大干一场。

谈起我国的生物瓣膜产业,北京佰仁 领域的突出成就,在美国拥有稳定的工作 些被认为不治之症的患者。"在2012首届中 册上市。我们积累了很好的海外资源,拥 有全球同领域最具权威和实力的上游合作 商。"目前,佰仁医疗已有8个产品获得国 家食品药品监督管理总局批准注册,其中4 个拥有完全自主知识产权。未来,倘若其 它产品都能顺利注册上市的话,市场价值 将达到上百亿元。

"创新到一定程度,就拥有了独占性, 人们对高品质健康的需求,胜过任何商业 的确,为了能够让更多病人重获新生, 模式。"金磊对未来充满希望,"我们已经在 美国、欧盟以及日本等地拥有自己的专

新发明

便携式"水刀"将广泛用于危险作业

本报讯 记者雷汉发报道:在国家安监总局不久前 主办的第四届国际安全生产应急技术与装备展览会上, 河北保定市锐迅安防特种技术开发有限公司展示的一台 便携式水切割设备,让与会者大开眼界,被称为"水刀"。 只见这台见方不过两尺,重量不过100多公斤的机器设 备喷射出一股夹带细沙的水流,射向一个煤气罐体,仅仅 十几分钟的时间,就将这一罐体整齐地切为两半,整个切 割过程没有产生火花,而被切割物体温度没有丝毫变 化。据悉这一设备已经在全国多地的易燃易爆施工现场 抢险中使用,使危险作业不再危险。

在现实生活中,有许多易燃易爆物品需要处理,比 如过期的炮弹,停用的储油、储气罐、管等,由于缺乏专 业工具,操作过程复杂,而且屡屡发生事故。为了解决 这个难题,保定锐迅公司的科技人员开始了相关探索, 通过对大量资料的研究学习,从前苏联的一理论刊物中 看到了一个水射流切割的概念,经过近3年的攻关,终 于开发成功便携式"水刀"。此设备获得了三项国家专 利,在多处危险作业现场大显身手。河北某城市曾在城 建施工中发现一枚上千公斤的未启爆航空炸弹,当地公 安部门与锐迅公司联系,请求利用水切割的办法销毁炮 弹,仅一个小时,航弹就被拆解。

据了解,这一技术与传统切割相比,具有切缝窄, 切品平整,无热变形,效率高,切割时无火花飞溅、无粉 尘等优点,特别适用于易燃易爆等行业的现场作业。 目前便携式水切割设备已经形成系列产品,被国家公 安、安监等部门推荐在全国石油、化工、煤矿、警用、救 援等危化领域使用。

新展会

台湾可供真人乘坐的"机器大海龟"面世

2013台湾"科学玩意节"8月24日开幕。图为一款 可供真人在水面乘坐的"机器大海龟"在展示。

新突破

世界最大单机容量核能发电机完成制造

本报讯 世界最大单机容量核能发电机——台山 核电站1号1750兆瓦核能发电机由中国东方电气集 团东方电机有限公司日前完成制造。

台山核电站是我国首座、世界第三座采用EPR三 代核电技术建设的大型商用核电站,是中法两国迄今为 止在核能领域的最大合作项目。东方电机为台山核电 站提供首期全部两台核能发电机,单机容量高达1750 兆瓦,是东方电机迄今为止制造的技术难度最高、结构 最复杂、体积最大、重量最重的核能发电机。

台山1号核能发电机的成功制造,标志着东方电气在 大容量、高参数发电机制造领域再次刷新纪录。(柯 吉)

新动向

我国二级以上中医院将设"治未病"科

本报讯 记者沈慧报道:"中医'治未病'健康工 程"新闻发布会近日在京召开,国家中医药管理局医政 司司长许志仁称,今后我国二级以上中医院均要求成 立"治未病"科,并与医院的体检中心合二为一。对体 检结果属于亚健康的人群,"治未病"科可根据中医理 念对其采取干预措施。

据介绍,国家中医药管理局目前已先后确定了四 批173所中医预防保健服务试点单位,涵盖了各种类 型医疗机构,形成了一系列的指南、路径,形成了技术 方面的方案等等,将通过第二个五年把它固化下来。 工程将重点打造四个平台:中医预防保健服务提供平 台;中医预防保健服务技术支撑建设;中医预防保健服 务人才队伍建设;中医预防保健服务政策保障建设。

新设备

世界最大全移动破碎站下线

世界最大全移动破碎站近日在位于河北万全县的 张家口市产业集聚区下线。由北京英迈特矿山机械有限 公司生产的该设备处理能力10000吨/小时,具有节约能 源、降低能耗、减少污染等特点。图为工人正在检测组装 全移动破碎站。 邢鹏飞摄

本版编辑 陈建辉 殷立春